This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

ASSIGNMENT OF THE GEOMETRIC ISOMERS OF BIS(L-ASPARTATO)COBALTATE(III) ION BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Larry R. Froebe^a; Shoichi Yamada^{ab}; Jinsai Hidaka^{ac}; Bodie E. Douglas^a ^a Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A. ^b Department of Education, Mie University, Tsu, Japan ^c Department of chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka, Japan

To cite this Article Froebe, Larry R., Yamada, Shoichi, Hidaka, Jinsai and Douglas, Bodie E.(1972) 'ASSIGNMENT OF THE GEOMETRIC ISOMERS OF BIS(L-ASPARTATO)COBALTATE(III) ION BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY', Journal of Coordination Chemistry, 1: 3, 183 — 187

To link to this Article: DOI: 10.1080/00958977208070761 URL: http://dx.doi.org/10.1080/00958977208070761

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ASSIGNMENT OF THE GEOMETRIC ISOMERS OF BIS(L-ASPARTATO)COBALTATE(III) ION BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY†

LARRY R. FROEBE,² SHOICHI YAMADA,³ JINSAI HIDAKA,⁴ and BODIE E. DOUGLAS*

Contribution from the Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 U.S.A.

(Received March 17, 1971)

The three possible geometric isomers of bis(*L*-aspartato)-cobaltate(III) ion each give a twelve-line ABX pmr spectrum at 100 MHz. The parameters from analysis of the spectra have been used to calculate line positions and intensities which compare favorably with those observed. The conformation of the CH---CH₂ moiety in the flexible six-membered chelate ring is calculated from the vicinal coupling constants. The geometric configurations are assigned using the proton chemical shifts. The results are compared to those for N_N '-ethylenediamine-disuccinatocobaltate(III) ion.

INTRODUCTION

The three possible geometric isomers of bis(L-2, 3-diaminopropionato) cobaltate(III) ion

 $([Co(N)_4(O)_2]$ configuration) have been prepared and separated.⁵ The *trans*(O)*cis*(α N)*cis*(β N) isomer was identified easily from the electronic absorption spectrum. The *cis*(O)*trans*(α N)*cis*(β N) and

 $cis(O)cis(\alpha N)$ trans(βN) isomers were correctly assigned by the method of less-soluble diastereomers and the ring-pairing method. The assignment was verified by the crystal structure⁶ of the $cis(O)trans(\alpha N)cis(\beta N)$ isomer. The opposite assignment⁵ resulted from the interpretation of CD spectra based upon the premise that, for one of the isomers, the opposite chiralities of chelate rings of different types cancel, leaving only a vicinal contribution. The vicinal, conformational, and configurational contributions are not separable from the data available, so that this approach is unreliable in this case. Subsequent study⁷ of the pmr spectra of these isomers plus those of bis(L-2,4diaminobutyrato)cobaltate(III) ion yielded correct assignments of all the isomers for both complexes.

The three possible isomers of bis(L-aspartato)cobaltate(III) ion ($[Co(N)_2(O)_4]$ configuration, L-asp=NH₂CH(CH₂CO₂)(CO₂)²⁻) have been prepared and separated by ion-exchange chromatography.⁸ A pmr study of these isomers was undertaken to complement the configurational assignments made from the interpretation of CD and absorption spectra⁸ and is reported herein. The conformation of the CH—CH₂ moiety of coordinated L-asp has been calculated from the vicinal coupling constants obtained by analysis of the pmr spectra. The assignments of the configurations of the geometric isomers have been made from consideration of the proton chemical shifts. The results are compared to those for the similar complex ion N,N'-ethylenediaminedisuccinato-cobaltate(III), Co(EDDS)^{-.9}

EXPERIMENTAL SECTION

Pmr spectra were recorded on a JEOLCO NMR spectrometer at 100 MHz in the frequency sweep mode with a frequency lock on the methyl resonance of t-butyl alcohol (TBA) at $\delta 1.234$ ppm (with respect to DSS at 0). Solutions contained ca. 10 wt % of the lithium salts of the isomers⁸ in D₂O (ca. 0.5 ml) with TBA added as an internal standard.

Calculation of theoretical line positions and intensities of ABX nmr spectra were carried out using a Hewlett-Packard 2116B computer. The program incorporated the usual expressions¹⁰ written in BASIC language. The program was tested by recalculating a known¹¹ theoretical spectrum.

RESULTS AND DISCUSSION

The three geometrical isomers of $Co(L-asp)_2^-$ (Figure 1) have C₂ symmetry, hence the pmr

FIGURE 1 Geometrical isomers of Co(L-asp)2⁻.

spectrum of any of the isomers is diagnostic of one coordinated L-asp dianion. Each of the isomers gives a twelve-line spectrum (Figure 2) at 100 MHz which is readily amenable to interpretation as an ABX pattern (Table I). Using the chemical shifts and coupling constants listed in Table I, theoretical line spectra were calculated which compared favorably with the observed spectra (Table II). It should be noted that the values of J_{AB} in Table I calculated from the upfield and downfield components of each AB pattern differ by ca. 1 Hz. This discrepancy may be due to greater overlapping of the components in the B portion of the AB patterns, since $J_{BX} < J_{AX}$. The theoretical and observed spectra compare more favorably for the X portion which is not dependent on J_{AB} (cf. Table II).

The Karplus equation¹² was applied simultaneously¹³ to average vicinal coupling constants for J_{AX} (5.1 Hz) and J_{BX} (2.2 Hz) to yield a dihedral angle of 67° for ϕ_{BX} .¹⁴ While the accuracy of this result is uncertain to within ca. \pm 5°,¹² the conclusion that ϕ_{BX} is larger than ϕ_{AX} and that the two angles are comparable¹⁵ is valid. These conditions are met when the CH₂CH moiety is part of a conformation of the six-membered chelate ring (Figure 3) which is intermediate between the chair and boat forms. This result indicates an intermediate, time-averaged conformation of the partially-flexible six-membered chelate ring on the pmr time scale. In this time-averaged conformation the chair form is slightly favored and the C—O bond of the carbonyl group opposite the NH₂

	First eluate ⁸ trans(N)	Second eluate ⁸ $cis(N)$ trans(O ₆)	Final eluate ⁸ cis(N)trans(O ₅)	
δ_{A} (ppm)	3.199	3.127	2.943	
δ _R	2.724	2.776	2.678	
δr	4.068	3.611	3.722	
JAB ^b (Hz)	18.7 (17.9,° 19.5 ^d)	18.4 (17.5, ^c 19.2 ^d)	18.8 (18.4.º 19.2 ^d)	
J_{AY}^{e} (Hz)	5.2	5.1	5.0	
J_{RY}^{AA} (Hz)	2.2	1.7	2.4	
$\delta_A - \delta_B (\text{ppm})$	0.475	0.351	0.265	

TABLE I

Coupling constants and chemical shifts^a for protons of Co(L-asp)2⁻

^a Values are ppm downfield from TBA at $\delta 1.234$ ppm (wrt DSS at 0), accuracy is ± 0.005 ppm.

^b Average of two values in parentheses, accuracy is ± 1 Hz.

 $^{c}J_{AB}$ from downfield components.

 $d J_{AB}$ from upfield components.

• Accuracy is ± 0.5 Hz; signs have not been determined.

FIGURE 2 Pmr spectra of the three geometrical isomers of $Co(L-asp)_2^{-}$.

group on the six-membered ring points roughly along the direction of the C—H_B bond (Figure 3). The assignment of A and B to specific protons is based upon consideration of shielding effects. Proton H_B lies near the plane of the adjacent carbonyl group of the six-membered ring in a shielding position¹⁶ and it is also in a shielding region of the carbonyl group on the five-membered ring. Both of these influences are consistent with the observation that H_B resonates upfield from H_A .

The three geometric isomers of $Co(L-asp)_2$ – can be generated by a sequence of three 120° rotations of a second tridentate L-asp group about the X, Y, and Z positions in Figure 3. Because the ligands are pure optical isomers, the geometric configuration fixes the absolute configuration about the metal. From the pmr spectra δ_A is farthest downfield for the isomer obtained as the first eluate by ion-exchange chromatography.⁸ This isomer is assigned the trans(N)¹⁷ configuration since Framework Molecular Models indicate that H_A lies near the line of the C-O bond of O_6^{17} (attached at Z in Figure 3) in the other ligand and hence is deshielded.¹⁸ H_A is relatively shielded by the C--O bond of O_5 (at Z in Figure 3) in the other ligand of the cis(N)trans(O₅) configuration assigned to the third (final) eluate⁸ isomer, and δ_A is farthest

FIGURE 3 Proposed conformation of the six-membered chelate ring of coordinated L-asp calculated from pmr parameters. The five-membered ring is rigid and is puckered toward the six-membered ring. The oxygen donor atoms of the five- and six-membered chelate rings are designated O_5 and O_6 , respectively.

upfield. H_A is intermediate to these cases in the $cis(N)trans(O_6)$ isomer, the second eluate,⁸ where it is opposite the H—N—H angle of the NH₂ group of the other ligand (also at Z). The same arguments can be applied to H_X to explain the relative values of δ_X for the isomers except that O_6 is responsible for a shielding effect and O_5 is responsible for a deshielding effect. The groups most influencial in determining δ_X lie at X in Figure 3. The chemical shift differences of δ_B for H_B among the isomers are small and difficult to interpret since the two carbonyl groups of an L-asp ligand isolate H_B more than H_A or H_X from effects of the other ligand.

It is instructive to compare the pmr spectra of the isomers of $Co(L-asp)_2^-$ to that of $Co(EDDS)^-$, N.N'-ethylenediaminedisuccinatocobaltate(III).¹⁹ When the Karplus equation is applied simultaneously to J_{AX} and J_{BX} for Co(EDDS)⁻ a dihedral angle ϕ_{AX}^{21} of 65° is obtained. Since the conformations of the L-asp groups are the same in coordinated L-asp and EDDS, configurational assignments can be carried out by pmr if the effect of the ethylene bridge in Co(EDDS)⁻ is considered. From Framework Molecular Models the ethylene bridge induces considerable strain through constriction of the N-Co-N bond angle and widening of the O_5 —Co— O_5 angle in the cis(N) trans(O_6) isomer. No strain is evident in the model of the cis'(N)trans(O₅) isomer.

The hydrogens on the ethylene bridge of $Co(EDDS)^-$ are crowded about H_X so that its chemical shift is no longer a good criterion of configuration compared to the $Co(L-asp)_2^-$ iso-

Comparison of experimental and calculated^a pmr spectra for Co(L-asp)2⁻

	Line	First eluate ⁸ trans(N)		Second eluate ⁸ cis(N)trans(O ₆)		Final eluate ⁸ cis(N)trans(O ₅)		
		Obs Position ^b	Theoret Position ^b	Theoret Intensity ^c	Obs Position ^b	Theoret Position ^b	Obs Position ^b	Theoret Position ^b
<u></u> ********************************	1	2.616	2.601	0.623	2.669	2.652	2.570	2.541
в	2	2.637	2.624	0.643	2.690	2.671	2.594	2.567
-	3	2.809	2.788	1.376	2.862	2.836	2.762	2.729
	4	2.833	2.811	1.356	2.882	2.855	2.785	2.755
	5	3.083	3.098	1.376	3.013	3.033	2.826	2.855
A	6	3.134	3.149	1.356	3.064	3.082	2.876	2.902
	7	3.262	3.285	0.623	3.188	3.217	3.009	3.043
	8	3.315	3.336	0.643	3.239	3.266	3.060	3.091
	9	4.032	4.031	1.000	3.576	3.577	3.685	3.685
х	10	4.082	4.082	1.000	3.626	3.626	3.735	3.733
	11	4.053	4.054	1.000	3.590	3.596	3.709	3.711
	12	4.105	4.105	1.000	3.640	3.645	3.758	3.759

^a Data in Table I used, 100 MHz spectra.

^b ppm downfield from TBA at $\delta 1.234$ ppm (wrt DSS at O), $\pm .005$ ppm.

^c Intensities are similar for all three calculated spectra.

mers. Direct comparison of single proton (A or B) chemical shifts is not possible since the chemical shifts for Co(EDDS)- were measured versus an external reference.⁹ A good criterion is available, however, from differences in chemical shifts, namely $\delta_A - \delta_B$. H_A and H_B are sufficiently removed from the ethylene bridge that the difference in their chemical shifts should not be adversely affected by its presence. H_A and H_B should still be affected by the shielding effects of the other L-asp group. The value of $\delta_B - \delta_A (\delta_A - \delta_B$ in this work) for Co(EDDS)⁻ is 0.23 ppm,⁹ comparable to 0.265 ppm for the cis(N) trans(O₅) isomer in this study (cf., Table I). Neal and Rose considered the corresponding arrangement more likely for Co(EDDS)⁻ (case I in Ref. 9).

ACKNOWLEDGMENT

We thank Dr. K. J. Johnson of this Department for carrying out computer calculation of the pmr spectra and for helpful discussions.

REFERENCES

- 1. This work was supported in part by a research grant (GM-10829) from the Division of General Medical Studies, U.S. Public Health Service.
- NDEA Title IV Predoctoral Fellow, University of Pittsburgh, 1970; NRC-BuMin Postdoctoral Research Associate, U.S. Bureau of Mines, Pittsburgh, Pennsylvania 15213, 1970-71.
- 3. Department of Education, Mie University, Tsu, Japan.
- Department of Chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka, Japan; Research Associate, University of Pittsburgh, 1971.
- 5. W. A. Freeman and C. F. Liu, Inorg. Chem. 7, 764 (1968).
- 6. C. F. Liu and J. A. Ibers, *ibid.* 8, 1911 (1969).
- 7. W. A. Freeman and C. F. Liu, ibid. 9, 1191 (1970).
- S. Yamada, J. Hidaka, and B. E. Douglas, *ibid.* 10, xxxx (1971).
- 9. J. A. Neal and N. J. Rose, ibid. 7, 2405 (1968).
- J. A. Pople, W. G. Schneider, and H. J. Bernstein, Highresolution Nuclear Magnetic Resonance (McGraw-Hill Book Co., Inc., New York, New York, 1959), p. 134.
- K. B. Wiberg and B. J. Nist, *The Interpretation of NMR Spectra* (W. A. Benjamin, Inc., New York, New York, 1962).
- M. Karplus, J. Chem. Phys., 30, 11 (1959); J. Am. Chem. Soc., 85, 2870 (1963); cf., S. Sternhell, Quart. Rev. 23, 236 (1969).
- cf., J. K. Beattie and Sr. H. Elsbernd, J. Am. Chem. Soc. 92, 1946 (1970).
- 14. The range of values for ϕ_{BX} calculated from the sets of J_{AX} and J_{BX} in Table I is 65-70°.

- 15. It is assumed that the dihedral angle formed by projection of the tetrahedral angle H_A —C.—H_B down the C.—C bond axis is 120° and that $\phi_{AX} = 120° - \phi_{BX}$. 16. G. J. Karabatsos, G. C. Sonnichsen, N. Hsi, and D. J. Fenoglio, J. Am. Chem. Soc. 89, 5067 (1967).
- 17. There is only one trans(N) isomer. The two cis(N) isomers are differentiated by the trans configuration of the oxygen donor atoms of the five- (O5) or six-membered (O_6) rings.
- 18. E. A. Berends, Ph.D. Thesis, University of North Dakota, Grand Forks, North Dakota, 1970; E. A. Berends and J. G. Brushmiller, Inorg. Nucl. Chem. Lett. 6, 847 (1970).
- 19. EDDS is two L-aspartic acid dianions linked at the N atoms by an ethylene bridge, cf., I in Ref. 9.
- 20. The arbitrary assignment of A and B in Ref. 9 is the reverse of that in this work, hence ϕ_{AX} in Ref. 9 is ϕ_{BX} in this work.